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Dynamic entanglement in oscillating molecules and potential biological implications
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We demonstrate that entanglement can persistently recur in an oscillating two-spin molecule that is coupled
to a hot and noisy environment, in which no static entanglement can survive. The system represents a non-
equilibrium quantum system which, driven through the oscillatory motion, is prevented from reaching its
(separable) thermal equilibrium state. Environmental noise, together with the driven motion, plays a construc-
tive role by periodically resetting the system, even though it will destroy entanglement as usual. As a building
block, the present simple mechanism supports the perspective that entanglement can exist also in systems
which are exposed to a hot environment and to high levels of decoherence, which we expect, e.g., for
biological systems. Our results also suggest that entanglement plays a role in the heat exchange between
molecular machines and environment. Experimental simulation of our model with trapped ions is within reach

of the current state-of-the-art quantum technologies.
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I. INTRODUCTION

The question, to what extent quantum mechanics plays a
role in biology, is still far from being well understood [1,2].
It seems that classical concepts alone are insufficient for a
proper understanding of certain biological processes, and
that coherent quantum effects need to be taken into account.
It has, e.g., long been known that quantum tunneling plays
an important role in enzymatic reactions [3,4]. Experimental
evidence for quantum coherence in the photosynthetic sys-
tem and polymers has recently been reported in [5-8]. The
interplay between the coherent free Hamiltonian and the en-
vironment is believed to significantly enhance quantum
transport in the Fenna-Matthews-Olson (FMO) protein com-
plex [9-11]. More generally, one can observe growing inter-
est in the role of quantum coherence and entanglement in
specific biological scenarios, e.g., photosynthesis [12-19]
and the chemical compass mechanism for magnetoreception
[20,21].

Apart from these isolated instances where quantum coher-
ence seems to help, it is however not clear to what extent
biological systems exploit quantum mechanics—beyond the
trivial fact that the latter determines, of course, the structure
of biomolecules—e.g., to optimize their functionality. Most
physicists and biologists are generally skeptical about the
question whether genuine quantum features such as entangle-
ment play a broader role in biology. The obvious reason for
that viewpoint is that entanglement is very sensitive to noise
and requires special conditions to be maintained, in particu-
lar very good insulation. Biological systems are anything
but-they are wet and hot, and with extremely high levels of
noise.

An often ignored fact is, however, that biological systems
are also open driven quantum systems, operating far away
from thermal equilibrium [2]. This opens many new possi-
bilities which have not yet been carefully considered. Differ-
ent from, e.g., solid state physics, things in biology move.
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Conformational motion is in fact an omnipresent and impor-
tant feature of biomolecular processes. Protein function, for
example, requires conformational motion [22,23] and so do
all kinds of molecular machines. Many of these conforma-
tional changes are reversible (under a supply of free energy)
and lead to quasiperiodic processes. During such motion, we
have to consider time-dependent quantum interactions (ca-
pable of forming, e.g., hydrogen or ionic bonds) which are
effectively switched on and off while the molecule changes
its shape. Since these interactions are accompanied by a sub-
stantial amount of noise (e.g., from fluctuating dipole fields
from the hydration shell and the bulk solvent), they are usu-
ally treated classically. A proper understanding of protein
dynamics may however require one to explore the capability
of these time-dependent interactions and whether they need
to be treated quantum mechanically [24]. Tt is, for example,
not clear whether or not entanglement is generated during
these motional processes. A positive answer to this question
might reveal novel and subtle aspect of protein dynamics and
biomotoric processes. It would also provide a new twist to
the study of nanobio interfaces, which are just in their in-
fancy.

In this paper, we investigate the effect of entanglement
generation during a nonequilibrium process driven by mo-
lecular motion. We introduce a semiquantal picture where the
conformational motion of a biomolecule is described classi-
cally, but it is assumed that it also carries quantum degrees of
freedom, such as nuclear spins and electronic states, which
are sufficiently localized on the molecule. Conformational
motion then gives rise to effectively time-dependent quan-
tum interactions, with their strengths depending on the mo-
lecular shape, see Fig. 1. We analyze the role of environmen-
tal noise and decoherence in such interactions. We find that
entanglement can be generated even at room temperature and
despite the presence of decoherence. This result suggests that
the underlying interactions should indeed be treated fully
quantum mechanically. It also shows that the usual paradigm,
that quantum interactions which are accompanied by signifi-
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FIG. 1. (Color online) Conformational changes of a biomolecule
[23], induced e.g., by the interaction with some other chemical, can
lead to a time-dependent interaction between different sites (blue)
of the molecule. See also [2].

cant levels of noise (as it is typically the case in a biological
environment) may be effectively described by a classical sto-
chastic process, is invalid in our context.

II. SEMIQUANTAL MODEL OF MOLECULAR MOTION

As a paradigmatic example, we study the time-dependent
interaction of two spins in a thermal and decoherent environ-
ment. We may imagine that the spins are attached to some
classical backbone structure whose shape changes in time, as
drawn schematically in Fig. 2. For simplicity we call such an
arrangement a two-spin molecule. We demonstrate that, if the
distance between the spins is oscillating, cyclic generation of
fresh entanglement can persist, even if no static entangle-
ment can survive. Environmental noise plays thereby both a
destructive and constructive role by effectively resetting the
system [25]. The oscillating molecule may be viewed as a
molecular machine that exchanges heat with the reservoir.
Our results then show that, for the chosen interaction, the
occurrence of entanglement is always accompanied by the
absorption of heat from the environment, which might pos-
sibly affect certain biological processes.

In the semiquantal picture that we have introduced, the
conformational changes lead to classical motion of quantum
degrees of freedom as illustrated in Fig. 2. We assume that
the two spins are coupled with Ising interaction and that
there also exist local electric and/or magnetic fields, both of
which are usually position dependent. Thus, the classical mo-
lecular motion induces an effective time-dependent Hamil-
tonian of the form

Hy() =J0)o"o'? + B(1) (6" + o), (1)

X X

where o-ff“) and o'g") are Pauli operators of the ath spin, J(z) is
the interaction strength, and w,(7) =2B(¢) the local level split-

x, (1) X, (1)

FIG. 2. (Color online) Model of a two-spin molecule which
undergoes conformational changes as a function of time. Both the
spin-spin interaction strength J and local fields B are position
dependent.
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ting. We emphasize that the subsequent results also hold for
more general Hamiltonians, but for simplicity we concen-
trate here on the Ising interaction. The coupling of the spins
to the environment will be described by a master equation of
the form

2 )=~ THy(0).p1+ Do) = LOp),  (2)

where Dp=2X MZLMpL;—LLLﬂp— pLLLM describes the effect
of the molecule-environment coupling, and L,, are Lindblad-
type generators.

II1. PERSISTENT RECURRENCE OF ENTANGLEMENT

The effect of the environment on the motion of biomol-
ecules is complex and far from being understood. To dem-
onstrate the essential physics, we first consider a worst-case
scenario, where the environment is described by bosonic heat
bath, with each spin being coupled to an independent thermal
bath of harmonic oscillators [26,27]. In the static case, it is
well known that, above a certain temperature, no initial en-
tanglement can persist in such an environment. We will how-
ever show that, even under such unfavorable conditions, en-
tanglement can be generated if the particles start oscillating
and the system moves out of equilibrium.

If the molecular oscillation is not too fast, in the sense that
the adiabatic condition for closed systems is satisfied, the
effect of the environment on the oscillating molecule can be
described by a master equation of type (2), with implicitly
time-dependent Lindblad generators (see Appendix, Sec.2).
As far as the static entanglement is concerned, at every mo-
lecular configuration (with fixed J and B), the molecule will
be driven toward its thermal equilibrium state p,;, at tempera-
ture 7. In the following, we adopt the concurrence C(p) [28]
as the measure of two-qubit entanglement of a state p. For a
separable (nonentangled) state it vanishes, while for a maxi-
mal entangled state it reaches the value 1, i.e., 0=C(p)=1.
It can be shown that, if the temperature is above a critical
value T,, no entanglement can survive in any static configu-
ration of the molecule, i.e., C(p,,)=0. In the following, we
will only consider such situations where T>T, (see Appen-
dix, Sec.3 and 4 for more details).

The main question we are asking is this: Can entangle-
ment possibly build up through the classical motion of the
molecule? The answer is affirmative and we demonstrate that
entanglement can indeed persistently recur in an oscillating
molecule, even if the environment is so hot that the static
thermal state is separable for all possible molecular configu-
rations, i.e., T>max{T,}.

Let us first present an intuitive explanation. Consider the
following simple process: until time =0, the spins are kept
distant (with J=0) and the molecule is in the thermal equi-
librium state, with the fraction p, of the population in the
ground state (|€y(0))==|||)). If the local level splitting is
sufficiently large such that wy(0) =ksT, p, will be rela-
tively large compared to the other energy levels. The thermal
state will therefore be close to the ground state, which is, in
this case, nonentangled. The adiabatic molecular motion
from the distant configuration to proximity will transform the
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FIG. 3. (Color online) (a) ground-state population p, and en-
tanglement C vs. the molecular configuration characterized by spin-
spin distance d for the bosonic heat bath with unit temperature 7
=1 and the system-bath coupling strength k=0.01. The blue dashed
curve is the instantaneous thermal equilibrium state. The arrows
indicate the evolution direction as the molecule oscillates. (b) heat
current J, vs entanglement C. The oscillation parameters are
x1(0)==x,(0)==20, a=5, 7=100, and By=1.3, B;=2.4, 0=120,
Jo=1X10* [see Eq. (3) and the text thereafter]. We use dimension-
less parameters for which the Planck and Boltzmann constants are
set to unity, =1, k,=1. The temperature T=1 means that we set the
thermal energy k,T" as the unit and express the other values as
multiples of the thermal energy. For example, B=1 indicates that
hB/k,T=1.

eigenstates of Hy,(0) into those of H,,(z); in particular, the
ground state |€,(0))— |€y(r)) will become entangled as the
coupling between the spins increases. This explains, qualita-
tively, why we may expect entanglement to build up in one
run of a conformational change, given that the molecular
motion is slow enough to be adiabatic, but at the same time
faster than the thermalization process: Driven through the
classical motion, the system is so-to-speak “kicked out” of
the (separable) thermal equilibrium state, as can be seen in
Fig. 3.

The above analysis only suggests that entanglement may
appear during an initial, transient stage of a conformational
change. However it does not explain how one can expect to
see entanglement on a longer time scale, when the environ-
ment begins to mix the internal states as the molecule con-
tinues to oscillate. It seems that, in the long run, it may (and
will) disappear as usual. What we are interested in, however,
is the persistent generation of dynamic entanglement, thus a
built-in mechanism is necessary to refresh the state of the
molecule by resetting it back to the initial state. It is intrigu-
ing that this role can be played by environmental noise to-
gether with oscillatory motion, both of which naturally exist
in biological systems without further need for control.

Let us now present the numerical results which we ob-
tained by numerically integrating Eq. (2). We consider the
situation where the spin positions are

X (1) =x,(0) + (- 1)“61(0052—:_” - 1), (3)

where x,(0) are the initial positions, a is the amplitude of
oscillation, and 7 is the oscillation period. For the local fields
we assume Gaussian functions of the spin position as B(z)
=BO—Ble‘x2(‘)/ 7. For the interaction between two spins we
assume dipole-dipole coupling J(t)=J,/d*(t) with d(1)
=|x;()=x,(¢)|. It can be seen from Fig. 3 that recurrent fresh
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entanglement appears on the asymptotic cycle. The thermal-
izing environment is here constructive by repumping the
population into the ground state.

For biological systems, 7= 300K, the thermal energy k,T
is about 0,025 eV. Energy scales in biomolecules are typi-
cally of the order 0.01-0.5 eV (e.g., for hydrogen bonds or
electronic excitation [24,29]) and thus A wy(0) can be several
times larger than k,T. The system-bath coupling strength «
=0.01 corresponds to a thermalization time of the order of
~ps, which compares e.g., with the time scale of (fast) con-
formational changes within biomolecules and with relaxation
times in the FMO complex [30]. These numbers seem to be
consistent with our conclusion that recurrent entanglement
might indeed be found in biomolecular processes at room
temperature.

The oscillating molecule exhibits rather distinct features
of nonequilibrium thermodynamics [31], e.g., the entropy
does not always increase with time and reach its saturate
value. The most instructive feature is perhaps the connection
between entanglement and the heat current 7, between the
molecule and its environment, which is defined by the energy
dissipated via the heat bath as [26]

Tn(1) = Tr{Hy()[Dp(1) ]} (4)

It can be seen from Fig. 3 that, whenever entanglement ap-
pears, J,(¢) is always positive, i.e., the molecule tends to
absorb heat. This can be understood as follows. We first note
that no entanglement exists in the thermal equilibrium state,
and the corresponding heat current vanishes. When the mol-
ecule oscillates, entanglement emerges on the asymptotic
cycle mainly because of a relatively larger population of the
(entangled) ground state, as compared to the thermal equilib-
rium state—see Fig. 3(a). The enhanced ground-state popu-
lation, in turn, leads to a population redistribution from the
ground state to the higher-lying energy levels, by which pro-
cess the molecule tends to absorb heat from its thermal en-
vironment. Thus, in the case of our oscillating molecule, the
occurrence of entanglement is accompanied with heat ab-
sorption. This connection depends of course on the details of
the Hamiltonian, e.g., the fact that the ground state is en-
tangled (which is, e.g., the case for the Ising interaction), and
as such it cannot be strict and general. However it illustrates
an intriguing interplay between entanglement and other ther-
modynamic quantities for such nonequilibrium systems,
which may also be interesting in the context of biomolecular
machines. More details, including, e.g., the time dependence
of various thermodynamic quantities on the asymptotic
cycle, are given in Appendix, Sec.5.

The results discussed so far have been obtained by mod-
eling the noisy environment as an Ohmic bosonic heat bath.
Clearly, this is a highly idealized model and in any real bio-
logical scenario we have far more complicated interactions,
e.g., with the surrounding hydration shell and the bulk sol-
vent [24,32]. We found similar results also with other deco-
herence models, based on collision-type interactions of the
environment with the system Dl] These can be described b%r
Lindblad generators Li,“)= \e"ysai“) and Lfla)=v"y(1 -s5)o,
where v is the collision-induced effective relaxation rate and
s is the mean excitation of a spin in thermal equilibrium. In
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FIG. 4. (Color online) Left: the maximal value of entanglement
on the asymptotic cycle C,, vs the oscillation period 7 (logarithmic
coordinate) with y=0.1. Right: C,, vs y with 7=10. The other pa-
rameters are s=0.2, x,(0)=—x,(0)=-25, a=10, and By=B,=1.2,
=120, Jy=1.2X 10%.

Fig. 4 we demonstrate the competition between the construc-
tive and destructive effects of environmental noise in such a
model, which yields an optimal value for the oscillation pe-
riod 7 to establish entanglement, see Fig. 4(a). For short os-
cillation periods, efficient thermalization becomes more im-
portant: with growing rate 7, the increase in reset efficiency
more than compensates the decrease in efficiency of en-
tanglement generation, see Fig. 4(b). In this regime, the net
effect of environmental noise is constructive. For more de-
tails see Appendix, Sec.6 and 7. The dependence of the en-
tanglement on 7and 7 seems reminiscent of what happens in
the nice example of quantum “‘stochastic resonance,” which
has been described in a quantum-optical context [33]. That
phenomenon is, however, fundamentally different from ours,
as it involves a bath at zero temperature, and the noise is the
main driving force.

Given the complexity of biological systems, how to char-
acterize biological environment is far from been understood.
The effect we presented—i.e., the existence of persistent
entanglement—is to a very large extent independent of the
precise details of the classical movement, and the thermal
bath. Of course, the detailed characteristics of the entangle-
ment (how much entanglement, how does it vary with time,
etc.) depend on the driving motion and the specific environ-
ment, but the very existence of persistent entanglement is
generic (extensible to different types of classical motions,
spectral density of thermal bath and also to the non-
Markovian environment). A number of different models il-
lustrating this generic property are presented in Appendix,
Sec.8.

IV. EXPERIMENTAL SIMULATION

One can test the feasibility of our model by simulating an
oscillating molecule in a noisy environment. Two internal
levels of trapped ions can encode an effective two-level sys-
tem. The system Hamiltonian in the form of Eq. (1) is imple-
mentable via state-dependent optical dipole forces [34]. The
classical oscillation, the essence of which is to introduce a
time-dependent Hamiltonian, can be simulated by tuning the
interaction strength and the transverse fields, which is
achievable, e.g., by changing the amplitudes of laser beams
[35-37]. Decoherence can be simulated by, e.g., applying
random pulses to induce different decoherence channels. One
can also simulate the bosonic bath by engineering the cou-
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pling between ions and vacuum modes of the electromag-
netic field through laser radiation [38]. Entanglement can
finally be detected by performing quantum state tomography
as in [39]. Other implementations are conceivable, e.g., using
quantum dots mounted on the tips of oscillating cantilevers
[40].
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APPENDIX
1. Methods

To account for the effect of the environment on the oscil-
lating two-spin molecule, we have studied different models,
two of which we discuss here. In the first model-the bosonic
heat bath-each qubit is coupled to an independent thermal
bath of harmonic oscillators. This is a well-known decoher-
ence model and the derivation of the master equation (2)
follows standard techniques (see e.g., [26]), with the impor-
tant difference that in our case the Hamiltonian H,,(f) of the
system is time dependent, i.e., its instantaneous energy spec-
trum changes as the qubits move. This makes the analysis
much more complicated, but under certain conditions it can
be still be described by an equation of type (2), albeit with
time-dependent Lindblad operators.

In the second model—the spin-gas model [41]—each qu-
bit is subject to random, collision-type interactions with a
“background gas” of other spin particles. These processes
can lead to both local spin exchange and dephasing. Here we
model these processes again by a Lindblad-type master equa-
tion [42], but we mention that a numerical treatment includ-
ing memory effects in the environment, which gives rise to
non-Markovian decoherence, can be given [41].

We calculate the entanglement that is generated during the
molecular motion, using the two-qubit measure of concur-
rence [28].

2. Master equation for the oscillating molecule in contact
with bosonic heat baths

The derivation of the master equation follows standard
arguments used in reservoir theory (see, e.g., [26]), but with
some important modifications due to the time dependence of
the problem.

One should point out from the outset that the derivation of
the master equation rests on a series of assumptions (includ-
ing e.g., the Born and Markov approximation and the secular
or rotating-wave approximation), neither of which we expect
to be very well satisfied in real biological systems.

What the master equation does provide, however, is a dy-
namical process that exhibits the essential features that we
expect to be most relevant in our system of consideration: a
process that is disentangling and that leads to decoherence
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and thermalization in the subsystem, the two-spin molecule.
Whether or not these processes follow, e.g., an exponential
decay is not so essential for the main argument.

The total Hamiltonian of the system and the environment
can be written in the form

H,,(t)=Hy(t) + Hp+ Hyp, (A1)

where H,,(r) is the time-dependent Hamiltonian (1) of the
two-spin molecule and Hg, H,p describe the oscillator bath
and the molecule-bath interactions, respectively. We assume
dissipative coupling, in which case the latter can be written
in the form

Hyp= 2, U'ia) ® B,

o

(A2)

where Ba=BL denote the collective bath degrees of freedom
that couple to the ath spin. The interaction constants have
been absorbed in the B,s.

Within the usual Born-Markov approximation, one ob-
tains an equation of motion for the two-spin molecule which,
in the interaction picture, has the form

%p(t) =- fo ds Try[Hyp(t),[Hyp(t = 5),p(1) ® pgl],

(A3)

where p(1)=Trgp,s(2) represents the reduced density matrix
of the two-qubit molecule after tracing out the degrees of
freedom of the thermal bathes.

To perform the secular or rotating wave approximation,
we expand the spin operators '® in Eq. (A2) into the basis
of instantaneous eigenstates |€,(z)) with eigenvalues €,(7)(i
=0,...,3) of the system Hamiltonian H,,(?), i.e.,

o =2 Sgl)
(1)

= X

w(t) E(l)—ej(t)=w(z)

(A4)

SPOleOXe®l.  (A5)

In the first line, the operators Ssz) describe intramolecular

transitions with frequency w(r) and the summation runs over
all resonant transition frequencies; in the second line,
Sf-j“)(t)=<e,-(t)|0')((“)|ej(t)) are the corresponding transition ma-
trix elements and the summation runs over all states with
matching energy eigenvalues €(t), €;(t). In the interaction
picture, which is used in the derivation of the master equa-
tion, we then write

a1 =2 U'(0)S,u ),
w(t)

(A6)

where U(t) is the unitary evolution generated by the system

Hamiltonian, U(¢)=Te 0Hu9)ds and T denotes the time or-
dering operator.

In a situation where the system’s evolution is adiabatic,
i.e., slow enough to avoid energy-changing transitions, the
eigenstates will only pick up a dynamic phase (under the
coherent evolution of the time-dependent system Hamil-
tonian) [31]. The time dependence of the spin operators in
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the interaction picture then acquires the simple form

o) =X oo X 519(1)] €(0))€/(0)].

() €()—€;()=0w(1)

(A7)

Upon inserting this into Eq. (A3) and applying (a generali-
zation of) the secular approximation [26], we obtain a master
equation of the form (2) with implicitly time-dependent
Lindblad operators [31]. The properties of the baths thereby
enter through the following Fourier-type transform of the
bath correlation functions

[oplo(-).1]= f”’ dseif;—s“’(s)d5<BZ(s)BB(0)), (A8)
0

which is different from the exact Fourier transform obtained
in case of a time-independent system Hamiltonian. For inde-
pendent baths, we only get a contribution for = . The Mar-
kov approximation assumes that the correlation functions
(B!(s)B,(0)) decay fast compared to the relaxation time,
which means that their real and imaginary part can essen-
tially be replaced by the delta function &(7) and its time de-
rivative &'(¢), respectively. It is therefore consistent to apply,
for small values of s, the following approximation for the
integral in Eq. (A8),

t
f o(t")dt' = w(1)s. (A9)
1—s
In summary, we can thus write
Faﬁ[w( . ),t] = 5aﬂrw(,), (AIO)

where the function I',,;) now depends only on the value of
the frequency w(7) at the time 7. Upon transforming back to
the Schrodinger picture, |€;(0)) in the transition operators
crf(“)(t) are mapped to |€(7)), and we finally obtain a master
equation with the implicitly time-dependent Lindblad gen-
erators

L,=L(o() =T 2 S@0)|e())Xe0)].
A,-j(z):w(r)

(A11)

The index uw={a,w(?)} in Eq. (2) runs here over @=1,2 and
over the allowed values of w(z). The relevant quantity of the
heat bath which enters I ;) is its spectral density function. If
we assume an Ohmic spectral density with infinite cut-off
frequency, we obtain

Fw(t) = K(I)(t)(l + Nw(t),,B)7 (A12)

where N, 5 is the bosonic distribution function at inverse
temperature B, i.e., Nw(,),ﬁzl/(e“’(’)ﬁ—l). The master equa-
tion (2) with these Lindblad operators was used to calculate
the data shown in Fig. 3.

3. Concurrence and static thermal entanglement

To measure the dynamic entanglement generated during
molecular oscillation, we compare it with the thermal equi-
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librium state when the molecular configuration is fixed at any
distance. In such a “static configuration,” both the Hamil-
tonian and the Lindblad operators are time independent. Fur-
thermore, the derived quantum master equation is then mix-
ing and the molecule will always be driven to its thermal
equilibrium state [26] corresponding to the reservoir tem-
perature S=1/T. For each specific molecular configuration,
with fixed spin-spin interaction strength J and local electric
or magnetic fields B, the thermal equilibrium state reads
roo 0 0 71y
0 ry rn O

30 0 0 r33

(A13)

where Z=Tr(e Pm) is the partition function and the matrix
representation refers to the computational product basis. The
nonzero entries of the above matrix are given by

roo=¢P = 2 sinh(ER)/(1 + 1), (A14)
ri1=ry=cosh(JB), (A15)

ry3=e P+ 2 sinh(EB)/(1 + 77), (A16)
ro3=—J sinh(EB)/E, riy=—sinh(JB)  (A17)

where Z=2[cosh(£B)+cosh(JB)], £=(4B*+J>)"?, and 7
=(£-2B)/J. To quantify the two-qubit entanglement, there
exist various kinds of entanglement measures. We choose the
concurrence C [28], which is defined as C=max{0,\;—\,
—N\3—\y4}, where the \;s are the square roots of the eigenval-
ues of pp in decreasing order [28], with p=(o,® 0,)p* (0,
® o,). For the thermal equilibrium state (A13), one obtains

2
Clpy) = Emax{O, rial = (roorss) "2 ros) = (riran) 2}

(A18)

Using the explicit expressions for rj,,7gg,733 one finds
7l .
that  [ry5|=(ror33)>=0 and |703|—("1lrz)l/zzjgsmh(gﬂ)
—cosh(JB).
The static thermal entanglement can thus be written as

Ml

C(pm)=§7max O,Esmh(fﬁ)—cosh(JB) . (A19)

In order to illustrate how the static entanglement changes as
the temperature increases, we calculate the first derivative of
C with respect to 8. After some straightforward calculations,
it can be seen that

IC(py)IdB =0, (A20)

which means that the static entanglement always decreases
as the temperature increases. This is consistent with our in-
tuition that there exists a critical temperature 7., above
which no static entanglement can survive. In other words, for
any fixed molecular configuration, entanglement will eventu-
ally vanish when the reservoir is too hot. In the main text, we
consider exactly such a situation. The temperature of the
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FIG. 5. (Color online) Left: the critical temperature 7. above
which any static entanglement disappears vs the molecular configu-
ration d, see the solid curve. For comparison, the red dashed line
gives the temperature used in our simulation, which is much higher
than the critical temperature at all possible molecular configura-
tions. Right: the ground-state population p, corresponding to the
thermal equilibrium state at the critical temperature 7.

environment is so high that the thermal state is separable
(nonentangled) at all possible molecular configurations, i.e.,
T>max{T,}.

4. Critical temperature for static entanglement

In Fig. 5, we plot the critical temperature 7. as a function
of the distance d between the spins. 7, is defined as the
temperature above which entanglement disappears in the
thermal equilibrium state of a given static configuration. The
temperature chosen in our simulations (e.g., Fig. 3, left),
which is chosen as unit in Fig. 5, is indeed much higher for
all values of d.

This means that, through the classical motion, dynamic
entanglement is recurrently generated at a temperature where
no static entanglement can survive. For comparison, we also
plot the corresponding ground-state population p, at the criti-
cal temperature. As expected, p, is close to unity at the dis-
tant configuration, since there the ground state is only
slightly entangled. The general dependance of the critical
temperature on the distance d is less straightforward, as it
depends not only on the ground-state entanglement but also
on the energy gap.

5. Thermodynamic properties of the oscillating molecule

Here, we present more details about the evolution of some
thermodynamic quantities as the molecule undergoes confor-
mational oscillations. To begin with, it is clear that thermo-
dynamic quantities are, in general, well defined only at equi-
librium and in the thermodynamic limit. However under
certain conditions it can be instructive to extend these defi-
nitions to molecular systems and to nonequilibrium situa-
tions. In order to justify these extensions in the present case,
we first take a look at the form of the molecular state during
the asymptotic cycle. If the adiabatic condition for closed
quantum systems is satisfied, the molecule that is initially in
the eigenstate of the Hamiltonian H,,(0) will remain in the
corresponding eigenstate of the Hamiltonian H,,(¢) at a later
time ¢. This implies that, on the asymptotic cycle, the density
matrix of the system will, at every time ¢, be diagonal in the
instantaneous eigenbasis of H,,(r). This can be verified quan-
titatively by calculating the fidelity between p(¢) and the cor-
responding diagonal state py(t)=2,p,(1)|€(t)){€(t)|, where
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FIG. 6. (Color online) Deviation of the system density matrix
p(1) from the corresponding diagonal density matrix py(f), quanti-
fied by 1-F, vs the molecular configuration d on the asymptotic
cycle. The red dot and arrow indicate the starting point and the
direction of evolution, respectively. The oscillation parameters are
the same as Fig. 3.

pi(t)=(&(t)|p(t)|€(t)) is the population of the ith eigenstate
of H,,(r), and

)2 (0)p(1)py (1)

F(p(1),po(1)) = tr\py 0 (A21)

is the fidelity. It can be seen from Fig. 6 that F=1-10"* for
the oscillating molecule with the same parameters as in Fig.
3. We may thus tentatively adopt the usual definitions for the
entropy and mean energy, based on the probability distribu-
tion p;().

We first consider the entropy S(#) and the internal energy
U(r) defined as follows

S(t) == 2 pi0)ln pi(2) (A22)
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FIG. 7. (Color online) Internal energy U, entropy S, heat current
J, and spectral temperature 7 vs the molecular configuration d on
the asymptotic cycle. The oscillation parameters are the same as
Fig. 3. The green dashed curves represent the thermal equilibrium
state at each molecular configuration. The blue and red arrows in-
dicate the evolution direction.
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FIG. 8. (Color online) Ground-state population p, (left) and
dynamic entanglement C (right) vs. the molecular configuration d.
Upper: Bosonic thermal bath at temperature 7=1 and «=0.01;
Lower: spin gas model with s=0.16 and y=0.025. The oscillation
parameters are the same as in Fig. 3. The first cycle and the
asymptotic cycle are indicated by the blue dashed and red solid
curves, respectively. The green dotted curves (left) represent the
instantaneous steady state corresponding to each molecular configu-
ration. The blue dot and arrows indicate the starting point and the
evolution direction.

Ui =2 &) p). (A23)

In the static case, i.e., for any fixed configuration
(d=const.), thermalization always increases the entropy
which approaches its maximum value in the long-time limit.
Similarly, the internal energy will approach its static equilib-
rium value. In the dynamic case, i.e., for the oscillatory mo-
tion [Eq. (3)], the situation is quite different and the system
will never reach its thermal equilibrium state, as can be seen
already in Figs. 8 and 9 shown above. In Fig. 7 we show the
evolution of S(¢) and U(r) on the asymptotic cycle. One can
see that their dynamic behavior changes dramatically as the
molecule oscillates. First of all, the entropy no longer in-
creases monotonically. Roughly speaking, it increases when
two spins come close, but decreases when they move apart.
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FIG. 9. (Color online) Ground-state population p, (left) and
dynamic entanglement C (right) vs the molecular configuration d
(logarithmic coordinate). The oscillation periods are 7=6 (green,
solid, gray), 20 (red, dashed, dark gray) and 100 (blue, dotted, light
gray) respectively. The dot and arrow indicate the starting point and
the evolution direction. Right: the green solid curve (with positive
values) only represents the first cycle, while subsequent cycles col-
lapse onto the abscissa, without entanglement. The other parameters
are the same as in Fig. 4 (left).
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A similar observation can be made for the internal energy.
(In the region when the spin become very close this rough
description must be refined. There, the details of the rate of
change of the energy spectrum, as compared to the thermal-
ization rate, become important). The increase of entropy has
to do with the fact that the energy gap between ground and
the first excited state decreases as the spins come close and
vice versa. The decrease of entropy in the remote configura-
tion effectively resets the molecule into a fresh state of low
entropy (i.e., larger purity), after which it is ready to become
re-entangled in the subsequent oscillation. This supports our
claim about the constructive role of thermalization in the
above section.

As we have discussed in the main text, a heat current J(¢)
between the molecule and the thermal bath can be defined by
the rate of change of the internal energy due to the (dissipa-
tive) interaction with the thermal bath as [26]

J() = TriH,()[Dp(1)]}. (A24)
Based on this definition, the total heat exchange during a
time interval [7,,1,] is given by

AQ= f C 7,0, (A25)

If the molecule stays in the thermal equilibrium state (static
scenario), the heat current will be zero jff)(t) =0, and thus no
heat will be exchanged. For the oscillating molecule, in con-
trast, the heat current 7,(¢) can be either positive or negative,
as is shown in Fig. 7 on the asymptotic cycle. In comparing
Fig. 7 with Fig. 3(a), we see that whenever the two spins are
entangled, the heat current J,(¢) is positive, i.e., the mol-
ecule absorbs heat from the thermal reservoir. Note that this
is a specific property of Hamiltonian Eq. (1), as discussed in
the main text.

Since the molecule is not in thermal equilibrium one can-
not adopt the standard definition of temperature. Neverthe-
less, its state is diagonal in the instantaneous eigenbasis of
H,, (7). In this case, one can define the so-called inverse spec-
tral temperature as in [43,44],

3
1 P0+P%)_l PitPin
—=|l-——" —Bii A26
Ts < 2 g 2 Bl,l 1 ( )
where B;;_1=—(In p;—In p; |)/A;; | corresponds to the “tem-

perature” associated with two neighboring energy levels
(viewed as a fictitious two-level system coupled to a heat
bath) with energy gap A, ;| =¢€;—¢;_;. If the system is in ther-
mal equilibrium, the spectral temperature reduces to the stan-
dard temperature. Based on the definition of spectral tem-
perature, one would say (see Fig. 7) that the molecule is
cooled down (or heated up) through its classical motion,
whereas the attached thermal bath is always at a fixed higher
temperature. While the interpretation of the spectral tempera-
ture needs to be taken with caution on general grounds, its
characteristics in Fig. 7 is consistent with the observed heat
exchange with the environment.
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6. Spin-gas model for the environment

The environment of biomolecular systems is rather com-
plex [45] and not yet fully understood, and some of its fea-
tures may not be well-described by a thermal bath model of
harmonic oscillators. To check whether the observed effects
are robust, we have also considered an alternative model—
the so-called spin gas model [41,42]—for the environment.
In this model, we assume collisions between the molecular
spins and other, randomly moving spin-particles that consti-
tute the environment. The collisions induce local energy dis-
sipation (i.e., spin exchange) and de-phasing, which leads to
decoherence and, if left alone, quickly destroys all entangle-
ment between the molecular spins [46].

The spin-gas model of the environment has been de-
scribed in Refs. [41,42]. For Ising-type interactions, one can
calculate the time evolution of small subsystems exactly, for
environments consisting of up to 10°—~10° particles, without
any approximations. Under certain conditions, one can again
derive a master equation by considering the effect of random
collisions on a coarse-grained time scale [42]. For the present
purpose, we will employ such a phenomenological descrip-
tion, but we emphasize that non-Markovian and collective
effects in the environment can be taken into account [41].

The effect of random collisions leads to Lindblad genera-
tors of the form L; e {Lé“),LEf‘) |a=1,2} with

Li,“) = \e”%a{f’) and LE,“) =yl - 5)a . (A27)

where aﬁ_ﬁ’)= (o-ff) + iai_"))/ 2 are the Pauli ladder operators for
a two-level system. The resulting master equation [42]. de-
scribes local energy gain and loss processes (“spin ex-
change”) with the effective rate y>0, while s is related to
the temperature and determines the equilibrium distribution
of the local excitation [42]. Without loss of generality, we
may assume that the y>0 and 0=s=1/2. If s is larger than
a critical value s., no static entanglement can exist [31],
similar as in the case of the bosonic heat bath in the previous
section.

Even though this model is quite different from the bosonic
heat bath, it has certain features in common, for example, it
is disentangling and mixing. Remarkably, we find the same
phenomenon as in case of the bosonic heat bath, namely, a
persistent recurrence of fresh entanglement in a regime
where the static entanglement vanishes for all molecular con-
figurations.

In Fig. 8 we compare the evolution of the oscillating mol-
ecule for the spin gas model and the bosonic heat bath
model. The upper panel of Fig. 8 reproduces the left three-
dimensional (3D) plot in Fig. 3 (left) by projecting it onto
two dimensional curves. The lower panel shows the same
evolution for the spin gas model. It can be seen that the
qualitative features are robust: During the first oscillation,
entanglement builds up when the spins approach each other,
while the evolution subsequently converges toward an
asymptotic cycle on which the entanglement periodically re-
curs. This observation strengthens our claim that this feature
is robust and does not seem to depend on the detailed fea-
tures of the environment.
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7. Competing effects of environmental noise
on dynamic entanglement

Another benefit of the phenomenological spin-gas model
is that it allows one to enter the regime of short oscillation
periods and to clearly illustrate the competition between the
constructive and the destructive effects of the environmental
noise [47]. In Fig. 4, we have plotted the maximal value of
entanglement that is assumed on the asymptotic cycle, in the
case where s=0.2>s, (i.e., the equilibrium state is separable
for all possible molecular configurations). The left plot dis-
plays the maximally achievable entanglement for different
oscillation periods. It can be seen that the occurrence of dy-
namic entanglement strongly depends on the oscillation pe-
riod; there are competing effects of the environmental noise
which give rise to an optimal oscillation period where the
effect is most pronounced.

To understand the results in Figs. 4 and 9 better, it is
worth looking at the detailed time evolution of the entangle-
ment and the ground-state population for three typical oscil-
lation periods.

First, consider a very long oscillation period, e.g., 7
=100. Here, the molecule is almost completely reset by ther-
malization to equilibrium when the spins are spatially sepa-
rated (distant configuration), with a large ground-state popu-
lation of up to ~65%, see Fig. 9 (blue curve). Since in this
regime the coherent evolution of the molecule is adiabatic,
the population of the instantaneous eigenstates of the system
Hamiltonian remains approximately constant, while the off-
diagonal elements remain negligible. When two spins come
closer, they start interacting and the ground state becomes
entangled (entanglement generation regime). If there were no
dissipation, the high population of the ground state alone
would be sufficient to generate entanglement. However,
while the spins approach each other, the energy separation
between the lowest lying levels decreases and the dissipation
starts repopulating the levels. This drives the molecular state
into the separable regime and diminishes its entanglement,
with only little entanglement surviving. For a moderate os-
cillation period, e.g., 7=20 (red curve), the dissipation still
has enough time to reset the system while it passes through
the distant configuration, with a ground-state population
similar as for as 7=100. In the entanglement generation re-
gime, however, the destructive effect of the dissipation is
now much smaller than for long oscillation period, which
leads overall to more entanglement. Finally, for a very short
oscillation period, e.g., 7=6, the destructive effect during the
entanglement generation regime is even smaller. On the other
hand, the reset effect in the distant configuration is greatly
suppressed, since the system does not have enough time to
thermalize and to repopulate the ground state. Thus, even
though the transient entanglement is larger in the first period,
as expected, it will diminish in subsequent runs and cannot
be sustained on the asymptotic cycle, due to the lack of an
effective reset mechanism.

8. Generic features of persistent dynamic entanglement
in noisy environment

In the main text, we have used a simple model, namely a
harmonically oscillating molecule in an Ohmic thermal bath,
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FIG. 10. (Color online) Ground-state population p, and en-
tanglement C vs the molecular configuration characterized by spin-
spin distance d for the bosonic heat bath. The spins move toward
(away) from each other with a constant speed. The other parameters
are the same as Fig. 3.

to demonstrate the essential mechanism for persistent dy-
namical entanglement to occur in a de-coherent environment
where no static entanglement can exist. Here we show that
neither the harmonic oscillatory motion nor the Ohmic ther-
mal bath are indispensable for such an effect. The existence
of persistent dynamic entanglement is to a very large extent
independent of the precise details of the classical motion and
thermal environment.

In Fig. 10, we consider a model where the spins move
toward (away) from each other with a constant speed, and
observe similar results as for the harmonic oscillatory mo-
tion. The same effect can also be seen in a scenario of sto-
chastic movements [31]. In short, the detailed characteristics
of the entanglement (how much entanglement, how does it
vary with time, etc.) depend on the driving oscillation, but
the very existence of persistent entanglement is generic. All
that is needed is that the classical motion obeys two condi-
tions: (i) is adiabatically slow but sufficiently fast compared
to decoherence and (ii) it spends long enough time at the far
end for thermalization to occur.

Regards the model for the bath, we have so-far used the
Ohmic bath (as well as the spin-gas model) as a example.
However, our results are also valid for other forms of spec-
tral densities. It can be seen from Fig. 11 that the effect of
persistent dynamic entanglement is not restricted to the
simple Ohmic bath, but occurs also for the sub-Ohmic and
supra-Ohmic bath, i.e., for a spectral density ~w*® with s
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FIG. 11. (Color online) Dynamic entanglement C vs the molecu-
lar configuration d for the sub-Ohmic (left, s=0.8) and supra-Ohmic
(right, s=1.2) thermal bath. The other parameters are the same as
Fig. 3. The blue dot and red arrows indicate the starting point and
the evolution direction. The first cycle and the asymptotic cycle are
indicated by the blue dashed and red solid curves, respectively.
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<1 or s> 1. We have also found that the present mechanism
works even with the spectral density from the solvent and
protein environment [24], e.g., a spectral density in the form
of ~3—0. Finally, by using the numerical method of quasiadia-

PHYSICAL REVIEW E 82, 021921 (2010)

batic propagator path integral [48,49], we have extended the
results to the non-Markovian environment with finite
memory time, and still see the generic effect discussed in the
main text. More details will be presented in [31].
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